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Abstract 

 Electrospray thrusters have been considered for the past 50 years; however, the low 

conductivity of and high volatility of liquids that were available resulted in thrusters that required 

too much power for them to be a viable propulsion option.  The lack of micro-fabrication 

techniques also resulted in electrospray thrusters with a large inert mass fraction.  These 

constraints have changed in recent times with the formulation and development of new, higher 

conductivity ionic liquids.  Manufacturing processes have improved for micromechanical 

systems which allow wafers to be etched with features compact enough to generate reasonable 

thrust density.  These developments have opened the possibility of having electrospray thrusters 

moving spacecraft. 

Electrosprays lend themselves to electric propulsion in two primary ways: Easily 

throttled thrust /specific impulse and high efficiency without charge accumulation.  Ionic liquids 

have several properties that make them ideal for electrospray.  These properties are the electrical 

conductivity, the surface tension coefficient, density, and dielectric constant.  All of these are 

affected by temperature changes in various magnitudes and need to be studied to determine the 

effects this can have on a propulsion system.   

 In this paper a model of an ionic liquid’s properties vs. temperature is presented and 

predictions of the effects temperature will have on the performance of an electrospray thruster 

are calculated.  Using literature on the relevant ionic liquids, a file will be read into a 

MATLAB®* script and a prediction will be generated to validate data collected in an laboratory 

experiment.  This script can then be refined and used to design and optimize a thruster for space 

operation where the propellant temperature is balanced by the mission and energy requirements.   

* MATLAB® Version 7.7.0.471 (R2008b) is a registered trademark of The Mathworks, Inc., 
One Apple Hill, Natick, MA. 
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Introduction 

Electrospray thrusters as a form of propulsion have been theorized for over fifty years.  

Sir Greogory Ingram Taylor in 1964 first described the electrospray phenomena when a 

conductive liquid is placed in an electric field (Matthew S. Alexander, September–October 

2007).  In the 1960’s and ‘70’s research was performed and then stalled as an appropriate 

propellant was not available and the physics were not well understood (James A. Nabity, 2006).  

The required voltage, 10kV, and low electrical efficiency made other modes of propulsion more 

appealing (Jijun Xiong, 2006).  Recently, ionic liquids with properties favorable to low voltage 

electrosprays in the range of 500V-5kV have been developed.  These liquids have high electrical 

conductivity and low vapor pressure making space propulsion a possibility.  Recent research has 

accelerated progress on ways to increase the propulsive efficiency means of electrosprays by 

means of characterizing the electrospray process more thoroughly and miniaturizing the size of 

each individual thruster.  (James A. Nabity, 2006) 

Electrospray modes 

All materials respond to temperature changes, some go through rapid phase changes, 

while others transition states more gradually.  Surface tension, density, electrical conductivity, 

and dielectric constant or static relative permittivity all change depending on the temperature.  

Ionic liquids properties tend to change steadily without sudden phase changes, though sometimes 

they can experience an order of magnitude change in the properties over the range of temperature 

of interest.  Despite the lack of sudden phase transitions, these continuous changes can influence 

the electrospray to change modes or quit operating making it crucial to understand the effects of 

temperature on electrospray operation.   
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Electrospray operation occurs when a conductive liquid is placed within an electric field; 

the surface of the liquid deforms as its surface establishes electrical equilibrium with the applied 

perpendicular electric field.  This deformation will form a cone-like structure called a Taylor 

cone that will vary in length and angle depending on the flow rate through the jet, the applied 

electric field, surface tension, and conductivity.  The local electric field within the cone structure 

increases as the cone narrows, which results in a very high electric field at the tip of the Taylor 

cone.  When the electric force is stronger than the surface tension charged droplets will separate 

from the tip and be electrostatically accelerated.  Current is carried by these droplets and can be 

negative or positive depending on the electric field.  Droplet emission occurs at lower field 

strength and when the field strength increases ionic emission can occur when the electric field 

reaches 1V/nm. (Mora, 2000)   

Taylor cones can be formed wherever the liquid forms a bubble or surface features cause 

a distortion in the liquid surface that sharpens the local electric field.  Externally wetted needles, 

porous emitters, and internally fed needles all can support Taylor cones but the surface geometry 

dictates how many Taylor cones can form within an area.  This is important at higher efficiencies 

for as the Taylor cones become smaller more charge is carried by each droplet or by ionic 

emission.   

Matching the correct emission material and emitter configuration to specific propulsion 

missions is very important.  Externally wetted needles can perform similarly to capillary needles, 

but suffer propellant flow restrictions when put in an array.  It is not simple for propellant to flow 

from the outside of an array to the inside with only surface tension forces.  As a result, individual 

needles can stop emitting and the thrust density is degraded.  Porous emitters do well covering 

the spectrum from operating in a single Taylor cone state to multiple cones attached at different 
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locations on the same surface as propellant can be pushed through the porous material to the 

emission sites.  Internally fed needles can have easily controlled flow rate and with current 

MEMS technology can be manufactured with thousands in one square inch.  Alignment of both 

externally and internally wetted needles to acceleration grids is sensitive to alignment errors and 

pressure changes can cause anomalies in the capillary flows.  For this project internally fed 

needles were used in order to control the flow rate and due to the horizontal orientation of our 

test stand.   

There are several modes that the Taylor cone can operate in.  These modes are dependent 

on the flow rate and voltage that the emitter is operating at.  Imagine starting a horizontal 

electrospray needle at a high propellant flow rate. Figures 1 through 5 illustrate how the emission 

mode changes as propellant flow goes from a high rate to a low or as acceleration potential goes 

from low to high.  At high rate, before a Taylor cone can appear, the surface deforms and forms a 

knob-like extrusion.  The knob will be held together by surface tension and thus resist the 

electric field.  As the flow continues the knob expands until electric forces overcome the surface 

tension and the knob falls.  The force of the applied electric field will still accelerate the drop 

toward the extractor grid even at higher flow rates.  Electrical acceleration still works on a 

massive droplet with small charge, but it isn’t as efficient.  
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When the flow rate is decreased or the voltage increased a Taylor cone forms although it 

isn’t completely stable.  Large droplets become detached in addition to the desired smaller drops, 

Figure 1. 

 

Figure 1: Electrical force starts to exceed gravitational. Note droop of Taylor cone. 

As the voltage increases further the Taylor cone shortens and becomes stable.  A jet can 

be seen with enough magnification and this is where the small droplets are generated.   

 

Figure 2: Taylor cone is shorter, no droop visible, spray of droplets is scattering green 
laser light. 
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Further increasing the voltage or decreasing the flow rate will cause the Taylor cone to 

shorten and resemble a right circular cone similar to Figure 3. The droplets should also be 

smaller than in Figure 2. 

 

Figure 3: Taylor cone is still shorter, straighter edges, spray still visible as scattered green laser 
light. 

 
An interesting phenomena occurs when the voltage is further increased but before 

multiple Taylor cones appear.  The region in close proximity to the tip of the Taylor cone will 

begin to glow, Figure 4, which can be seen without illumination.  This is believed to be 

ionization of the surrounding air by ions that are accelerated from the tip of the Taylor cone 

(Mora, 2000). 

 
Figure 4: Ion emission is now evident as purple glow from ionization of air by energetic 

electrospray ions. Note that only green laser is on, incandescent illumination is off. 
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As the voltage is increased further, multiple Taylor cones will appear off the same 

emitter.  In the case of a single needle two cones could form, one in the lower half and a smaller 

one in the upper, or many more with their bases spread equidistant around the needle’s edge. 

More magnification would be needed to see multiple needles in this series of photos.  

 

Figure 5: Really short cone off axis, ionization glow still visible.  

Rough surface features lend to multiple Taylor cone formations at the rim of the needle 

or anywhere liquid adheres to the exterior as they cause deformations in the surface of the liquid.  

Multiple Taylor cones are usually undesirable as they jettison droplets in off-axis directions and 

may impact the extractor plate if used.  If further acceleration is required to keep droplet 

acceleration vectors aligned then the voltage can be lowered and a second extractor plate or 

acceleration grid can be used to further accelerate the droplets in the desired direction.   
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Modeling: 

 Two performance characteristics that describe a space propulsion system are the specific 

impulse and thrust which, for an electrospray, are given by the following equations: 

asp V
m

q

g
I 2

1


 Equation 1
 

spe ImgumT    (James A. Nabity, 2006) Equation 2 

where g is the acceleration due to gravity at Earth’s surface,  q/m is the charge-to-mass ratio of 

the droplets, aV  is the acceleration voltage, m  is the mass flow rate, and eu  is the exit velocity 

of the droplets.  The droplet charge was assumed to be close to the Rayleigh limit for a spherical 

droplet: 

3
08 Rq   (Cole, 2000) Equation 3 
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where 0  is the permittivity of vacuum,   is the surface tension coefficient of the liquid, V is the 

volume of a sphere, r the radius of the sphere, and   is the density of the liquid.  The diameter 

of the droplets is dependent on the radius of  curvature in the region of maximum electric force, 

KR  as is given in the following equations:   
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  (W.D. Luedtke, 2008), (Mora, 2000) Equation 5 
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where Q is the flow rate through the region of maximum electric force and K  is the conductivity 

of the liquid.  There is a physical limit to the flow rate below which a Taylor cone will not form.  

The following equation gives us the minimum flow rate: 

K
Q


0

min   (Matthew S. Alexander, September–October 2007) Equation 6 

where   is the dielectric constant for the liquid.   

These equations allow us to predict specific impulse and thrust for an electrospray thruster and 

were written into several MATLAB® programs and functions which are included in Appendix 

A.   

The model was arranged to run through all data points with respect to temperature, flow 

rate, and voltage.  The only true independent variable was the voltage which could be set apart 

from the other two variables.  Voltage was set to cover the range of 500 V to 20 kV.  The 

minimum flow rate is dependent on all the variables affected by temperature; therefore 

temperature was set first, then the flow rate calculated.  This resulted in a three-loop program 

that would set the temperature, set a flow rate, and loop through all the voltages last.  

MATLAB® doesn’t allow 3X3 matrix rows or columns to be plotted directly in a command 

prompt, thus a separate Plot script was used to output the data in graphs.   

1-methyl-3-butylimidazolium tetrafluoroborate ([BMIM][BF4]) was chosen because of 

its prevalence in the electrospray literature, its high electrical conductivity, and the availability of 

data (TRC/NIST/Boulder, 2006).  This ionic liquid was also readily available from several 

suppliers.  Several sources of property vs. temperature data were referenced and plotted in Excel. 

Data that fell significantly outside the general curve or had a higher degree of uncertainty were 

discarded.  This resulted in two equations being generated for the behavior of the density and 

surface tension coefficient over the range of 250-480 K.  The electrical conductivity data was 
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filtered in the same way, but that data was not linear so MATLAB® was used instead to 

interpolate between all available data points.   

Model Results 

Figure 6 and Figure 7 show the changes that occur in the surface tension, density, and 

electrical conductivity for BMIM BF4.  These data sets are normalized with respect to the value 

at 250 K.  The trends seen are consistent with typical liquids; as the temperature increases the 

density decreases due to expansion. Surface tension also decreases.  The same temperature 

increase also results in an electrical conductivity increase as more ions are free to move and 

exchange charges.  As a result, we will expect a broad range of values for any variable that is 

dependent on the electrical conductivity and this dependency will drive our model development.   

 

Figure 6  
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Figure 7  

 In Figures 8 & 9 we see the broad effect of temperature across the range of thrust and Isp.  

The traces in Figure 8 intuitively make sense, as temperature increases the efficiency of the 

electrospray increases due to the increased conductivity.  As expected, the low voltage, high flow 

rate has the lowest specific thrust while the high voltage, low flow rate has the highest.  This is 

consistent with previous comments that acceleration is more efficient for large q/m droplets. The 

thrust profile in Figure 9 is not quite as straight forward.  Two trends are present that are 

dependent on the flow rate.  If the flow rate is high, the increase in temperature also increases 

thrust.  Conversely, as the temperature rises for a fixed low flow rate, the thrust goes down 

drastically.   
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Figure 8 

 

Figure 9 
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In Figures 10 & 11 we see the specific thrust versus flow rate while holding voltage 

steady.  The graphs appear identical except for the scale of the specific thrust axis.  The 

temperature steps show that we can expect increases in the specific thrust up to an order of 

magnitude.  This agrees with different literature sources that operate in the picoliters per second 

with very small needles. (Mora, 2000) 

 

Figure10 
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Figure11 

Revisiting our observation from Figure 9 we graph the thrust versus flow rate while holding 

voltage steady in Figures 12 and 13.  As expected the thrust increases as the flow rate increases 

and the total mass ejected by the electrospray increases.  The thrust appears to go down in Figure 

9 because the increasing temperature increases the conductivity and lowers the surface tension 

(Figures 6 & 7), both of which lower the minimum flow rate at which emission can occur.  The 

trend follows the low flow rate limit Qmin, thus the appearance of diminishing thrust.  Again we 

see that we can significantly increase the thrust output by increasing the temperature, sometimes 

by as much as 500% at the higher temperatures. 
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Figure 12 

 

Figure 13 
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When the flow rate is held constant and the voltage varied, we obtain graphs like Figures 14 and 

15 for low flow rate and medium flow rate respectively.  Again we see the familiar trend as the 

temperature increases the performance increases sometimes by as much as a magnitude.  An 

interesting data point is that where the medium flow rate gives the highest specific thrust value of 

1000 s, which is the same point that the low flow rate graph starts.  This provides a very good 

cross-section of the performance range of electrosprays. Voltage again has an exponential 

response for each temperature contour.   

 

Figure 14 
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Figure 15 

Figure 16 seems to be flipped, but again we see the effect that the temperature has on the 

minimum flow rate.  As the temperature increases the thrust goes down because the flow rate 

goes down as was discussed previously.  Figure 17 shows a very similar trend but not as steep a 

slope as with respect to the voltage increase.  Both figures have an exponential increase as the 

voltage is increased.   
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Figure 16 

 

Figure 17 
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The final figures from the MATLAB® script shows the expected charge the droplets should 

carry away.  Figure 18 shows the expected charge with respect to temperature across all data 

points.  This figure shows the effect that flow rate has on the system.   

 

Figure 18 

Fixing the voltage as constant a prediction was made as seen in Figure 19.  For a given flow rate, 

holding the voltage constant, an increase in charge will be seen as the temperature increases.  

The magnitude of the change will be dependent on the flow rate and temperature extremes.  A 

magnification of the range of the flow rates we experimented with is seen in Figure 20. 
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Figure 19 
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Experiment Setup 

 An experiment to test the results of the script was constructed in the Electric Propulsion 

Laboratory at the Air Force Research Laboratory located on Edwards AFB, CA.  The 

experimental apparatus was set up inside a vacuum chamber to enable future testing without 

moving the experimental setup.  A 250 microliter syringe and 22s needle were purchased from 

the Hamilton Company to serve as the internally fed needle and fuel reservoir.  These were 

mounted on a Harvard Apparatus Pico Pump after the syringe was properly loaded to prevent 

bubble formation. This experimental setup can be seen in Figure 21.  An electrically isolated 

metal plate was placed 4.6 mm away to serve as the extractor plate and collect the charge from 

the ejected droplets.  A BK Precision 2MHz function generator provided the input voltage to a 

Trek Model 10/10B High Voltage Amplifier which biased the plate.  Two Agilent 6 ½ Digit 

Multimeters collected outputs of voltage and current from the Trek amplifier while a Keithley 

Picoammeter/Voltage Source collected the current that left the needle tip seen in Figure 22.  To 

protect the equipment, two resistors were placed in series as can be seen in Figure 23.  These 

inputs were provided to a LabVIEW™ * program  that processed and output the data into a text 

file.  A MATLAB® program was created to read these files and plot the data in a useful manner.  

The orange tape on the needle tip thermally bonds the J type thermocouple to the needle so that 

needle temperature and also ionic liquid temperature could be measured. This assumes that the 

liquid can achieve thermal equilibrium by the time it exits the needle and also that the needle 

temperature is isothermal. Transit time in the high flow case of 60 nL/min is 16.7 minutes.  The 

temperature data was manually recorded from a Tektronix DMM916 True RMS fluke meter.   

 

* LabVIEW ™ 8.6, Copyright © 2008 National Instruments. All rights reserved 
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Figure 21: View of electrospray experimental setup with needle, plate, and illumination lamp 

 

 

Figure 22: Close up of needle, lamp, and extractor plate 
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Figure 23: Electrical diagraph of experiment 

 To validate the temperature effect the incandescent lamp shown in Figure 22 was either 

turned on or off.  This gave two temperatures of 22 ° C (295.15 K) and 49 ° C (323.15 K).  A 

few attempts to lower the temperature of the entire syringe and needle were tried but the thermal 

conduction of the needle and tape allowed for rapid temperature changes.   

Experiment Results 

 For our experiment we ran the syringe at three different flow rates: 15, 30, and 60 nL/min 

at the same voltage potential.  The test cases were run at least half an hour to ensure mass flow 

equilibrium and in most cases were run for an hour.  The figures are arranged with the current 

traces in the top sub plot and the voltage in the bottom sub-plot.  The data collected will be 

presented with first the positive current traces then the negative current traces and finally a figure 

with the total data collected for each experimental run.   

 Figures 24 and 25 show a portion of the results for running at 15 nL/min (¼ nL/sec) at 22 

° C and 49 ° C respectively.  Positive current corresponds to current flowing from the needle to 
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plate in the form of positively charged droplets traveling from the needle to the plate. Negative 

current corresponds to current flowing from the needle to the plate in the form of negatively 

charged droplets.  The first observation is that the average current measured on the picoameter is 

lower for the higher temperature case than for the cooler temperature.  The glow discharge was 

also observed during these runs which suggest that we had ionic emission and possible ionization 

of the air which could contribute to the oscillatory behavior as can be seen in Figure 26.  The 

data suggests that the Taylor cone is stable, there are no visible disturbances of the Taylor cone 

and the current though oscillatory does have a high average value.  However, this mechanism 

needs to be investigated further. Future operation under vacuum will prove or disprove that air 

interactions are involved.   

Figure 24: Positive Current 
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Figure 25: Positive Current 

 

 

Figure 26: Oscillations 
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Figure 27: Negative Current 

 

 

Figure 28: Negative Current 
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Figure 29: Negative Current 

 

 

Figure 30: Negative Current 
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Taylor cone for the 15 nL/min case.  The negative current shows a cyclic nature that oscillates 

between -0.25 micro-amperes to -0.35 micro-amperes for the 22 °C run as is seen in Figure 33.  

The 49 °C run has some oscillation too but ranges from -0.3 to -0.45 micro-amperes in Figure 

34.  Figure 35 shows the entire run and the oscillation in the positive current clearly.  This wave 

pattern is a result of macro droplets leaving the Taylor cone as it switches polarity.  Larger 

droplets detach because the Taylor cone collapses during the transition from negative to positive 

voltage, or vice versa, and as it reforms additional forces are applied.  As the Taylor cone grew 

longer, the electric forces should have become stronger and more charge would have been 

carried in the droplets.  After a large droplet detaches the overall length of the Taylor cone would 

shorten considerably to make up for the fluid volume lost and the charge carried would decrease 

on subsequent droplets.  Only three large drops were extracted according to the data in Figure 35 

while five were extracted in Figure 36.  This suggests that the higher temperature allows more 

stable operation at higher flow rates.   
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Figure 31: Positive Current 

 

Figure 32: Positive Current 
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Figure 33: Negative Current 

 

Figure 34: Negative Current 
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Figure 35: All Current 

 

Figure 36: All Current 
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had an uneven mass flow rate.  Figure 40 has very few of these sharp increases and more level 

current traces.  The increase in oscillation frequency can be seen in Figures 41 and 42 which 

show a factor increase of 7.6 and 4 over their 30 nL/min counterparts respectively.   

 

 

Figure 37: Positive Current 

 

Figure 38: Positive Current 
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Figure 39: Negative Current 

 

Figure 40: Negative Current 
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Figure 41: All Current 

 

Figure 42: All Current 
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mixed results with two lines increasing proportionally but the lowest flow rate decreasing.  The 

numbers are also an order of magnitude or more above calculated predictions as shown in Figure 

44.  This although unexpected could partly be explained by ionic emission and decomposition of 

the BMiM BF4 liquid.  Observation of the pictures taken during these runs also supports ionic 

emission.  Figures 2 and 3 while negatively biased display droplets which Figure 4 lacks.  If we 

take the conductivity for the last segment of the temperature curve and apply a linear trend line 

we get the following curve in Figure 45 for the charge in relation to temperature.  The highest 

charge predicted would be 6 X 10-6 at 700 K which is 250 K above BMIM BF4’s thermal 

decomposition temperature (Michael E. Van Valkenburg, 2003).  In order to reach the charge at 

300 K a charge-to-mass ratio of 23,320 C/kg would be needed.   

Although this is unexpected it does have some major benefits for an electrospray thruster.  

Operating at 15 nL/min at 295.15  K we have a charge-to-mass ratio of 23,2317.8 C/kg.  This 

gives us a calculated specific thrust of 1392 s and a thrust of 1.018 X 10-6 N an improvement of 

1177 s and 3.8395 X 10-7 N or 647.5% and 160.5% improvement respectively.  From an 

operation standpoint if the power is available this would be the preferred mode of operation.   
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Figure 43 

 

Figure 44 
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Figure 45 
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Figure 46: Lamp turned off at 1200 s, back on at 1290 

Future Work 

 More predictive tools need to be researched and developed into the script.  The current 

script has the size of the droplets dependent only on the flow rate, Equation 5, but voltage has 

some effect.  Better prediction and understanding of the different Taylor cone modes needs to be 

implemented.  This may help us predict more accurately the expected performance.  Temperature 

was severely restricted with the conductive tape and needle.  The use of an electrothermal 

cooling device to heat and cool the needle will be implemented in the next round of testing to 

better control this factor.  The tests will also be repeated under vacuum to determine if the glow 

discharge is indeed ionization of the air or breakdown of the ionic liquid.  The glow discharge 

effect calls for faster sampling of the test data to better understand this phenomenon.  Different 

ionic liquids will be tested to see if they have similar responses to temperature and voltage.   
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Summary and Conclusion 

 In summary, we presented an introduction of electrosprays and our findings for the 

numerical and experimental studies of an electrospray thruster.  We were able to form a stable 

Taylor cone at all test points and collect data; however our current data does not agree with the 

model calculations.  It is evident from the data collected that temperature plays a major role and 

needs to be studied further; especially its interactions with flow rate and voltage.  The model 

matched the experimental data only for the case of 30 nL/min at 49 deg C on the negative bias 

side, but as 60 nL/min also was recorded at this point it is more coincidence than accurate 

prediction.  The rest of the negative data holds steady at the roughly same current.  For the 

positive bias, we clearly have some sort of ionic emission because of the charge-to-mass ratio.  

The results for the positive current follow the general trends we modeled but are an order of 

magnitude above calculated values.  The temperature would have to be 300 K higher in order to 

account for this kind of difference.  As shown in the Figure 46, we can control the mode by 

controlling the temperature.  This allows us to increase the specific impulse and thrust 

substantially by at least 100%.  An ionic liquid could be manufactured that with a simple 

temperature change switch from one mode to another and leave the voltage and flow rate the 

same.  The flow rate and voltage can be adjusted to the desired level but temperature control will 

allow operations in conditions outside of the normal electrospray startup environment.  This is 

important for the eventual miniaturization and scaling of electrosprays.  Smaller needles will lead 

to smaller flow rates and temperature plays a larger role at smaller flow rates making control of 

temperature very important.  Equal thermal conduction to all the emitter tips will also be 

important to have uniform thrust.   
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Appendix: MATLAB® Script 
clear;clc;close all; 
%Main program to intake Voltage and Flow rate and return Thrust and Isp for 
%colloid thruster with regards to temperature.  References geometry, liquid 
properties and constants 
liquid3 
constants 
Va=linspace(0.5e3,20e3,x);                             %Voltage potential (V) 
for k=1:x 
    [gamma, rho, K]= Temp(Tk(k)); 
    for i=1:x 
    Qmin(k)=(gamma.*kappa.*eps0)./(rho.*K) ;           %Lowest Flow rate 
    Q=linspace(Qmin(k),1.e-12,x);           %Flow rate (m^3/s) (1 
picoliter/s=1e-15 m^3/s) 
    Qplot(1:x,k)=Q; 
    %Droplet size 
        Rk=(eps0.*Q./K).^(1/3);    %Jet Radius (m) 
        Dd=3.3*Rk;                 %Droplet diameter (m) 
         qdm=12.*sqrt(2)./rho*(eps0*gamma./Dd.^3).^0.5;         %Charge per 
mass ratio (C/kg) 
        mdot=Q.*rho;             %Mass flow rate (kg/s) 
    %Outputs 
        for j=1:x 
            Isp(i,j,k)=1/g*(2*qdm(j).*Va(i)).^0.5;  %Specific Impulse (s) 
            T(i,j,k)=mdot(j)*g.*Isp(i,j,k);           %Thrust (N) 
            C(i,j,k)=mdot(j)*qdm(j); 
        end 
    end 
end 
Plot 
 
%Liquid properties input file for colloid thruster for BMI BF4 
kappa=[11.7];           %Dielectric constant  
x=100;  %determines size of end matrix, needs to be multiple of four to avoid 
errors while plotting 
Tk=linspace(250,450,x);           %Temperature array (Kelvin) 
 
%Constants for colloid thruster 
eps0=8.8541878e-12;         %Permittivity of vacuum (C^2/(N*m^2) 
g=9.80665;                      %Local gravity constant (m/s^2) 
 
function  [gamma,rho,K]= Temp(T) 
%Script to return values based on Temperature 
  
rho=rhoft(T); 
K=Kft(T); 
gamma=gammaft(T); 
 
function rho=rhoft(T) 
rho=-0.694*T+1408; 
%function to return density as function of temperature in Kelvin for BMIM BF4  
 
function K=Kft(T) 
Kp=[238 0.00212; 248 0.00778; 258 0.02318; 263 0.036; 268 0.05477; 273 0.08; 
278 0.1132; 283 0.16; 288 0.211; 293 0.28; 298 0.3587; 303 0.45427; 308 
0.556; 313 0.69129; 318 0.821; 323 0.99417; 328 1.15; 333 1.364; 338 1.545; 
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343 1.7999; 348 2; 353 2.3015; 358 2.52; 368 3.1; 373 3.4; 378 3.73; 388 
4.41; 398 5.13; 408 5.88; 418 6.64; 428 7.45; 438 8.29; 448 9.15; 458 10.04; 
468 10.94]; 
K=interp1(Kp(:,1),Kp(:,2),T); 
  
%function to return conductivity as function of temperature in Kelvin for 
BMIM 
%BF4  
 
function gamma=gammaft(T) 
gamma=-6e-5*T+0.0621; 
%function to return the surface tension of BMIM BF4 as function of 
%temperature in Kelvin 
 
%Extracting data from the 3D grids 
    Ip1(1:x)=Isp(1,1,1:x);      %Temperature Isp(V,Q,K) 
    Ip2(1:x)=Isp(1,x,1:x); 
    Ip3(1:x)=Isp(x/2,x/2,1:x); 
    Ip4(1:x)=Isp(x,1,1:x); 
    Ip5(1:x)=Isp(x,x,1:x); 
    T1(1:x)=T(1,1,1:x); 
    T2(1:x)=T(1,x,1:x); 
    T3(1:x)=T(x/2,x/2,1:x); 
    T4(1:x)=T(x,1,1:x); 
    T5(1:x)=T(x,x,1:x); 
    Ip6(1:x)=Isp(1,1:x,1);      %Flowrate Isp(V,Q,K) 
    Ip7(1:x)=Isp(1,1:x,x/4); 
    Ip8(1:x)=Isp(1,1:x,x/2); 
    Ip9(1:x)=Isp(1,1:x,x*3/4); 
    Ip10(1:x)=Isp(1,1:x,x); 
    T6(1:x)=T(1,1:x,1); 
    T7(1:x)=T(1,1:x,x/4); 
    T8(1:x)=T(1,1:x,x/2); 
    T9(1:x)=T(1,1:x,x*3/4); 
    T10(1:x)=T(1,1:x,x); 
    Ip11(1:x)=Isp(x/2,1:x,1); 
    Ip12(1:x)=Isp(x/2,1:x,x/4); 
    Ip13(1:x)=Isp(x/2,1:x,x/2); 
    Ip14(1:x)=Isp(x/2,1:x,x*3/4); 
    Ip15(1:x)=Isp(x/2,1:x,x); 
    T11(1:x)=T(x/2,1:x,1); 
    T12(1:x)=T(x/2,1:x,x/4); 
    T13(1:x)=T(x/2,1:x,x/2); 
    T14(1:x)=T(x/2,1:x,x*3/4); 
    T15(1:x)=T(x/2,1:x,x); 
    Ip16(1:x)=Isp(1:x,1,1);         %Voltage Isp(V,Q,K) 
    Ip17(1:x)=Isp(1:x,1,x/4); 
    Ip18(1:x)=Isp(1:x,1,x/2); 
    Ip19(1:x)=Isp(1:x,1,x*3/4); 
    Ip20(1:x)=Isp(1:x,1,x); 
    Ip21(1:x)=Isp(1:x,x/2,1); 
    Ip22(1:x)=Isp(1:x,x/2,x/4); 
    Ip23(1:x)=Isp(1:x,x/2,x/2); 
    Ip24(1:x)=Isp(1:x,x/2,x*3/4); 
    Ip25(1:x)=Isp(1:x,x/2,x); 
    T16(1:x)=T(1:x,1,1); 
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    T17(1:x)=T(1:x,1,x/4); 
    T18(1:x)=T(1:x,1,x/2); 
    T19(1:x)=T(1:x,1,x*3/4); 
    T20(1:x)=T(1:x,1,x); 
    T21(1:x)=T(1:x,x/2,1); 
    T22(1:x)=T(1:x,x/2,x/4); 
    T23(1:x)=T(1:x,x/2,x/2); 
    T24(1:x)=T(1:x,x/2,x*3/4); 
    T25(1:x)=T(1:x,x/2,x); 
    C1(1:x)=C(1,1,1:x);   %Charge(V,Q,K) 
    C2(1:x)=C(1,x,1:x); 
    C3(1:x)=C(x/2,x/2,1:x); 
    C4(1:x)=C(x,1,1:x); 
    C5(1:x)=C(x,x,1:x); 
    C6(1:x)=C(1,1:x,1); 
    C7(1:x)=C(1,1:x,x/4); 
    C8(1:x)=C(1,1:x,x/2); 
    C9(1:x)=C(1,1:x,x*3/4); 
    C10(1:x)=C(1,1:x,x); 
    C11(1:x)=C(x/5,1:x,1); 
    C12(1:x)=C(x/5,1:x,x/4); 
    C13(1:x)=C(x/5,1:x,x/2); 
    C14(1:x)=C(x/5,1:x,x*3/4); 
    C15(1:x)=C(x/5,1:x,x); 
    Csurf1(1:x,1:x)=C(1:x,1:x,1); 
    Csurf2(1:x,1:x)=C(1:x,1:x,x/2); 
    Csurf3(1:x,1:x)=C(1:x,1:x,x); 
     
figure 
semilogy(Tk,Ip1,Tk,Ip2,Tk,Ip3,Tk,Ip4,Tk,Ip5) 
xlabel('Temperature (K)') 
ylabel('Specific Thrust (s)') 
title('Isp vs. Temperature ') 
legend('LV,LQ','LV,HQ','MV,MQ','HV,LQ','HV,HQ') 
figure 
semilogy(Tk,T1,Tk,T2,Tk,T3,Tk,T4,Tk,T5) 
xlabel('Temperature (K)') 
ylabel('Thrust (N)') 
title('Thrust vs. Temperature ') 
legend('LV,LQ','LV,HQ','MV,MQ','HV,LQ','HV,HQ') 
figure  
loglog(Qplot(1:x,1),Ip6,Qplot(1:x,x/4),Ip7,Qplot(1:x,x/2),Ip8,Qplot(1:x,x*3/4
),Ip9,Qplot(1:x,x),Ip10) 
xlabel('Flow rate (m^3/s)') 
ylabel('Specific Thrust (s)') 
title('Isp vs. Flow rate at 500V') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
figure 
loglog(Qplot(1:x,1),T6,Qplot(1:x,x/4),T7,Qplot(1:x,x/2),T8,Qplot(1:x,x*3/4),T
9,Qplot(1:x,x),T10) 
xlabel('Flow rate (m^3/s)') 
ylabel('Thrust (N)') 
title('Thrust vs. Flow rate at 500V') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
figure 
loglog(Qplot(1:x,1),Ip11,Qplot(1:x,x/4),Ip12,Qplot(1:x,x/2),Ip13,Qplot(1:x,x*
3/4),Ip14,Qplot(1:x,x),Ip15) 
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xlabel('Flow rate (m^3/s)') 
ylabel('Specific Thrust (s)') 
title('Isp vs. Flow rate at 10kV') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
  
figure 
loglog(Qplot(1:x,1),T11,Qplot(1:x,x/4),T12,Qplot(1:x,x/2),T13,Qplot(1:x,x*3/4
),T14,Qplot(1:x,x),T15) 
xlabel('Flow rate (m^3/s)') 
ylabel('Thrust (N)') 
title('Thrust vs. Flow rate at 10kV') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
figure 
loglog(Va,Ip16,Va,Ip17,Va,Ip18,Va,Ip19,Va,Ip20) 
xlabel('Voltage (V)') 
ylabel('Specific Thrust (s)') 
title('Isp vs. Voltage at LQ') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
figure 
loglog(Va,Ip21,Va,Ip22,Va,Ip23,Va,Ip24,Va,Ip25) 
xlabel('Voltage (V)') 
ylabel('Specific Thrust (s)') 
title('Isp vs. Voltage at MQ') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
figure 
loglog(Va,T16,Va,T17,Va,T18,Va,T19,Va,T20) 
xlabel('Voltage (V)') 
ylabel('Thrust (N)') 
title('Thrust vs. Voltage at LQ') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
figure 
loglog(Va,T21,Va,T22,Va,T23,Va,T24,Va,T25) 
xlabel('Voltage (V)') 
ylabel('Thrust (N)') 
title('Thrust vs. Voltage at MQ') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
figure 
semilogy(Tk,C1,Tk,C2,Tk,C3) 
xlabel('Temperature (K)') 
ylabel('Current (A)') 
title('Current vs. Temperature') 
legend('LV,LQ','LV,HQ','MV,MQ') 
figure 
loglog(Qplot(1:x,1),C6,Qplot(1:x,x/4),C7,Qplot(1:x,x/2),C8,Qplot(1:x,x*3/4),C
9,Qplot(1:x,x),C10) 
xlabel('Flowrate (m^3/s)') 
ylabel('Current (A)') 
title('Current vs. Flowrate') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
figure  
plot(Qplot(1:x,1),C11,Qplot(1:x,x/4),C12,Qplot(1:x,x/2),C13,Qplot(1:x,x*3/4),
C14,Qplot(1:x,x),C15) 
xlabel('Flowrate (m^3/s)') 
ylabel('Current (A)') 
title('Current vs. Flowrate') 
legend('250 K','298.5 K','349 K','399.5 K','450 K') 
%script is for opening and handling the data output from DAQ for 
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%Electrospray.   
clear;clc; 
Tryopen 
f=6; 
scrsz=get(0,'ScreenSize'); 
BN={'15 nL/min @ 295 K';'15 nL/min @ 322 K'; 
    '30 nL/min @ 295 K'; '30 nL/min @ 322 K'; 
    '60 nL/min @ 295 K'; '60 nL/min @ 322 K'}; 
for k=1:f 
     
    R=dlmread(B{k}); 
  
if i < 1; i=1;end; 
Time=R(:,1); 
Voltage=R(:,2); 
Current=R(:,3); 
Pico=R(:,4); 
[row,col]=size(R); 
figure 
plot(Time,Voltage) 
tbeg=input('Starting Index ');close; 
[mindif,beg]=min(abs(Time-tbeg)); 
Current2=Current-4.34e-9; 
Current2=Current2*1.e3;  
figure('Position',[1 scrsz(4)/4 scrsz(3)*.85 455]); 
NCax=subplot(2,1,1); 
plot(Time(beg:row),Current2(beg:row),Time(beg:row),Pico(beg:row 
title(BN{k});ylabel('Current (A)'); 
Vax=subplot(2,1,2); plot(Time(beg:row),Voltage(beg:row)) 
title('Pico Current & Voltage vs. Time'); ylabel('Voltage (V)'); 
linkaxes([NCax Vax],'x'); 
CM(k)=mean(Current2); 
PM(k)=mean(Pico); 
end 
 
fid=fopen('Files.txt','r'); 
A=textscan(fid, '%s', 'whitespace'); 
B(1,:)=A{1}; 
fclose(fid); 
 
HAC=[-3.577e-7;     %Average negative current recorded, (C/s) 
    -4.025e-7; 
    -3.468e-7; 
    -4.018e-7; 
    -3.156e-7; 
    -3.27e-7]; 
HAC2=[6.5e-6; 5e-6; 
    8e-6; 1e-5; 
    7e-6; 8e-6]; 
     
Thac=[295.15; 322.15];                  %Temperture HAC was taken at 
  
HACcal=1e-7*[-1.6707; -2.8752;         %Calcualtion from script, (C/s) 
    -2.3627; -4.0602; 
    -3.3414; -5.7505]; 
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Tplot=(250:450);  
    Gplot=gammaft(Tplot); Rplot=rhoft(Tplot); Kplot=Kft(Tplot); 
figure 
plot(Tplot,Gplot./Gplot(1),Tplot,Rplot./Rplot(1));  
title('Surface Tension and Density vs Temperature'); 
xlabel('Temperature (K)'); ylabel('Normalized Variable'); 
legend('Surface Tension', 'Density'); 
figure 
plot(Tplot,Kplot./Kplot(1));  
title('Electrical Conductivity vs Temperature'); 
xlabel('Temperature (K)'); ylabel('Normalized Conductivity'); 
  
figure 
plot(Thac,HAC(1:2,1),'-o',Thac,HAC(3:4,1),'-o',Thac,HAC(5:6,1),'-
o',Thac,HACcal(1:2,1),Thac,HACcal(3:4,1),Thac,HACcal(5:6,1)) 
title('Current vs Temperature'); 
xlabel('Temperature (K)'); 
ylabel('Current (A)'); 
legend('15 nL/min','30 nL/min','60 nL/min','Cal 15 nL/min','Cal 30 
nL/min','Cal 60 nL/min'); 
figure 
plot(Thac,HAC2(1:2,1),'-o',Thac,HAC2(3:4,1),'-o',Thac,HAC2(5:6,1),'-o',Thac,-
HACcal(1:2,1),Thac,-HACcal(3:4,1),Thac,-HACcal(5:6,1)) 
title('Current vs Temperature'); 
xlabel('Temperature (K)'); 
ylabel('Current (A)'); 
legend('15 nL/min','30 nL/min','60 nL/min','Cal 15 nL/min','Cal 30 
nL/min','Cal 60 nL/min'); 
 
clear;close all; clc; 
x=1000; 
T=linspace(350,700,x);Q=5e-13; 
for i=1:x;  
    P(i)=HT(T(i),Q); 
    CT(i)=Q*rhoft(T(i)).*P(i); 
end 
  
figure 
plot(T,P); title('Current to Mass Ratio vs Temperature') 
figure 
plot(T,CT); 
title('Current vs Temperature'); xlabel('Temperature (K)');ylabel('Current 
(A)') 
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Electrospray 
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Electrospray Thrusters
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MATLAB Code
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BMiM BF4 Properties

•1-butyl-3-methylimidazolium tetrafluoroborate
•Density: 1215.43-1163.6   kg/m3

(278-353 K)

•Surface Tension Coefficient:  0.04529-0.0403 N/m
(284-360 K)

•Electrical conductivity: 0.00212-10.94   1/(Ohm m)
(238-463 K)

•El t i l itti it 11 7•Electrical permittivity: 11.7
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Code Results

•MATLAB program, estimate
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Physical Property Thermal Response

Surface Tension and Density vs Temperature Electrical Conductivity vs Temperature
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Performance Thermal Response
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Specific Thrust Thermal Response
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Thrust’s Thermal Response
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Isp vs. Voltage
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Thrust vs. Voltage
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Current Thermal Response
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Test Matrix
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Experiment Setup
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Equipment

• 250 microliter syringe and 22s needle (Hamilton Company) 
• Harvard Apparatus Pico Pump pp p
• BK Precision 2MHz function generator 
• Trek Model 10/10B High Voltage Amplifier 
• Agilent 6 ½ Digit MultimetersAgilent 6 ½ Digit Multimeters
• Keithley Picoammeter/Voltage Source
• Tektronix DMM916 True RMS fluke meter
• J Type Thermocouple• J Type Thermocouple
• LabView
• Incandescent Lamp
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Electrospray Movie

Electrospray movie 1
Electrospray movie 2Electrospray movie 2
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Taylor Cone modes
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Glow Discharge
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Graph Overview
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Observations

•Order of magnitude difference between 
positive and negative bias

•Electrospray droplets in negative bias
•Glow discharge 
−Positive bias, easily attained
−Negative bias, HV or very low flow rate

•Order of magnitude difference between 
iti di ti d d tpositive predictions and data

•Length of Taylor cone effects current
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Lamp off
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Current Comparison
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Cal 60 nL/min

1.018 X 10-6 N
15 nL/min (295 K) Prediction Actual % increase
q/m (C/kg) 555.4336 23,2317.8 41,826.57

Isp (Calculated) 215 1392 647 5
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Isp (Calculated) 215 1392 647.5

T (Calculated) 6.3405 X 10-7 1.018 X 10-6 160.5



BMIM BF4 Theoretical Limit
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Thruster Design Considerations

•Geometric design of emitters
Th l d ti f itt•Thermal conduction of emitters

•Mission requirements
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Future Work

•Expand Temperature range
R t t t d•Repeat tests under vacuum

•Implement faster sampling
B tt di ti t l d d•Better predictive tools encoded
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Conclusions

•Stable electrospray cones achieved
Sh d t iti t•Showed current very sensitive to

temperature
•Model did not match data•Model did not match data

•Future work to identify why

•Better predictions needed in modelBetter predictions needed in model
•Showed unexpected ionic emission

•This is good for improved performanceThis is good for improved performance
•This is not what I predicted
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Summary

•Introduction to Electrospray Thrusters
M d l D l t•Model Development

•Code Results
E i t S t•Experiment Setup

•Experiment Results
F t k•Future work

•Conclusion
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Questions

???
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